21 research outputs found

    MicroRNA-200c Attenuates the Tumor-Infiltrating Capacity of Macrophages

    Get PDF
    Macrophages constitute a major part of the tumor-infiltrating immune cells. Within the tumor microenvironment, they acquire an alternatively activated, tumor-supporting phenotype. Factors released by tumor cells are crucial for the recruitment of tumor-associated macrophages. In the present project, we aimed to understand the role of hsa-miR-200c-3p (miR-200c) in the interplay between tumor cells and macrophages. To this end, we employed a coculture system of MCF7 breast tumor cells and primary human macrophages and observed the transfer of miR-200c from apoptotic tumor cells to macrophages, which required intact CD36 receptor in macrophages. We further comprehensively determined miR-200c targets in macrophages by mRNA-sequencing and identified numerous migration-associated mRNAs to be downregulated by miR-200c. Consequently, miR-200c attenuated macrophage infiltration into 3-dimensional tumor spheroids. miR-200c-mediated reduction in infiltration further correlated with a miR-200c migration signature comprised of the four miR-200c-repressed, predicted targets PPM1F, RAB11FIB2, RDX, and MSN

    MicroRNA - a tumor trojan horse for tumor-associated macrophages

    No full text
    MicroRNAs (miRs) significantly contribute to the regulation of gene expression, by virtue of their ability to interact with a broad, yet specific set of target genes. MiRs are produced and released by almost every cell type and play an important role in horizontal gene regulation in the tumor microenvironment (TME). In the TME, both tumor and stroma cells cross-communicate via diverse factors including miRs, which are taking central stage as a therapeutic target of anti-tumor therapy. One of the immune escape strategies adopted by tumor cells is to release miRs as a Trojan horse to hijack circulating or tumor-localized monocytes/macrophages to tune them for pro-tumoral functions. On the other hand, macrophage-derived miRs exert anti-tumor functions. The transfer of miRs from host to recipient cells depends on the supramolecular structure and composition of miR carriers, which determine the distinct uptake mechanism by recipient cells. In this review, we provide a recent update on the miR-mediated crosstalk between tumor cells and macrophages and their mode of uptake in the TME

    Therapeutic targeting of microRNAs in the tumor microenvironment

    No full text
    The tumor-microenvironment (TME) is an amalgamation of various factors derived from malignant cells and infiltrating host cells, including cells of the immune system. One of the important factors of the TME is microRNAs (miRs) that regulate target gene expression at a post transcriptional level. MiRs have been found to be dysregulated in tumor as well as in stromal cells and they emerged as important regulators of tumorigenesis. In fact, miRs regulate almost all hallmarks of cancer, thus making them attractive tools and targets for novel anti-tumoral treatment strategies. Tumor to stroma cell cross-propagation of miRs to regulate protumoral functions has been a salient feature of the TME. MiRs can either act as tumor suppressors or oncogenes (oncomiRs) and both miR mimics as well as miR inhibitors (antimiRs) have been used in preclinical trials to alter cancer and stromal cell phenotypes. Owing to their cascading ability to regulate upstream target genes and their chemical nature, which allows specific pharmacological targeting, miRs are attractive targets for anti-tumor therapy. In this review, we cover a recent update on our understanding of dysregulated miRs in the TME and provide an overview of how these miRs are involved in current cancer-therapeutic approaches from bench to bedside

    Macrophage S1PR1 signaling alters angiogenesis and lymphangiogenesis during skin inflammation

    No full text
    The bioactive lipid sphingosine-1-phosphate (S1P), along with its receptors, modulates lymphocyte trafficking and immune responses to regulate skin inflammation. Macrophages are important in the pathogenesis of psoriasiform skin inflammation and express various S1P receptors. How they respond to S1P in skin inflammation remains unknown. We show that myeloid specific S1P receptor 1 (S1PR1) deletion enhances early inflammation in a mouse model of imiquimod-induced psoriasis, without altering the immune cell infiltrate. Mechanistically, myeloid S1PR1 deletion altered the formation of IL-1β, VEGF-A, and VEGF-C, and their receptors’ expression in psoriatic skin, which subsequently lead to reciprocal regulation of neoangiogenesis and neolymphangiogenesis. Experimental findings were corroborated in human clinical datasets and in knockout macrophages in vitro. Increased blood vessel but reduced lymph vessel density may explain the exacerbated inflammatory phenotype in conditional knockout mice. These findings assign a novel role to macrophage S1PR1 and provide a rationale for therapeutically targeting local S1P during skin inflammation

    Establishment of a bovine viral diarrhoea virus type 2 intranasal challenge model for assessing vaccine efficacy

    Get PDF
    The objective of this study was to develop a bovine viral diarrhoea virus type 2 (BVDV-2) challenge model suitable for evaluation of efficacy of BVDV vaccines; a model that mimics natural infection and induces clear leucopoenia and viraemia. Clinical, haematological and virological parameters were evaluated after infection of two age groups of calves (3 months and 9 months) with two BVDV-2 strains (1362727 and 502643). Calves became pyrexic between 8-9 days post inoculation and exhibited symptoms such as nasal discharge, mild depression, cough and inappetance. Leukopenia with associated lymphopenia and neutropenia was evident in all groups with lowest leukocyte and lymphocyte counts reached 8dpi and granulocyte counts between 11 and 16 dpi, dependent on the strain and age of the calves. A more severe thrombocytopeania was seen in those animals inoculated with strain 1362727. Leukocyte and nasal swab samples were positive by virus isolation, as early as 3 dpi and 2 dpi respectively, independent of the inocula used. All calves seroconverted with high levels of BVDV-2 neutralising antibodies. BVDV RNA was evident as late as 90 dpi and provides the first evidence of the presence of replicating virus long after recovery from BVDV-2 experimental infection. In summary, moderate disease can be induced after experimental infection of calves with a low titre (104.8 or 105.0 TCID50) of virulent BVDV-2, with leucopoenia, thrombocytopoenia, viraemia and virus shedding. These strains represent an attractive model to assess the protective efficacy of existing and new vaccines against BVDV-2

    (Homo-)harringtonine prevents endothelial inflammation through IRF-1 dependent downregulation of VCAM1 mRNA expression and inhibition of cell adhesion molecule protein biosynthesis

    No full text
    The plant alkaloid homoharringtonine (HHT) is a Food and Drug Administration (FDA)-approved drug for the treatment of hematologic malignancies. In addition to its well-established antitumor activity, accumulating evidence attributes anti-inflammatory effects to HHT, which have mainly been studied in leukocytes to date. However, a potential influence of HHT on inflammatory activation processes in endothelial cells, which are a key feature of inflammation and a prerequisite for the leukocyte-endothelial cell interaction and leukocyte extravasation, remains poorly understood. In this study, the anti-inflammatory potential of HHT and its derivative harringtonine (HT) on the TNF-induced leukocyte-endothelial cell interaction was assessed, and the underlying mechanistic basis of these effects was elucidated. HHT affected inflammation in vivo in a murine peritonitis model by reducing leukocyte infiltration and proinflammatory cytokine expression as well as ameliorating abdominal pain behavior. In vitro, HT and HHT impaired the leukocyte-endothelial cell interaction by decreasing the expression of the endothelial cell adhesion molecules intracellular adhesion molecule −1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1). This effect was mediated by a bipartite mechanism. While HHT did not affect the prominent TNF-induced pro-inflammatory NF-ĸB signaling cascade, the compound downregulated the VCAM1 mRNA expression in an IRF-1-dependent manner and diminished active ICAM1 mRNA translation as determined by polysome profiling. This study highlights HHT as an anti-inflammatory compound that efficiently hampers the leukocyte-endothelial cell interaction by targeting endothelial activation processes

    Lactate dehydrogenase B regulates macrophage metabolism in the tumor microenvironment.

    No full text
    Background: Glucose metabolism in the tumor-microenvironment is a fundamental hallmark for tumor growth and intervention therein remains an attractive option for anti-tumor therapy. Whether tumor-derived factors such as microRNAs (miRs) regulate glucose metabolism in stromal cells, especially in tumor-associated macrophages (TAMs), to hijack them for trophic support, remains elusive. Methods: Ago-RIP-Seq identified macrophage lactate dehydrogenase B (LDHB) as a target of tumor-derived miR-375 in both 2D/3D cocultures and in murine TAMs from a xenograft mouse model. The prognostic value was analyzed by ISH and multiplex IHC of breast cancer patient tissues. Functional consequences of the miR-375-LDHB axis in TAMs were investigated upon mimic/antagomir treatment by live metabolic flux assays, GC/MS, qPCR, Western blot, lentiviral knockdown and FACS. The therapeutic potential of a combinatorial miR-375-decoy/simvastatin treatment was validated by live cell imaging. Results: Macrophage LDHB decreased in murine and human breast carcinoma. LDHB downregulation increase aerobic glycolysis and lactagenesis in TAMs in response to tumor-derived miR-375. Lactagenesis reduced fatty acid synthesis but activated SREBP2, which enhanced cholesterol biosynthesis in macrophages. LDHB downregulation skewed TAMs to function as a lactate and sterol/oxysterol source for the proliferation of tumor cells. Restoring of LDHB expression potentiated inhibitory effects of simvastatin on tumor cell proliferation. Conclusion: Our findings identified a crucial role of LDHB in macrophages and established tumor-derived miR-375 as a novel regulator of macrophage metabolism in breast cancer, which might pave the way for strategies of combinatorial cancer cell/stroma cell interventions

    MicroRNA-200c Attenuates the Tumor-Infiltrating Capacity of Macrophages

    Get PDF
    Macrophages constitute a major part of the tumor-infiltrating immune cells. Within the tumor microenvironment, they acquire an alternatively activated, tumor-supporting phenotype. Factors released by tumor cells are crucial for the recruitment of tumor-associated macrophages. In the present project, we aimed to understand the role of hsa-miR-200c-3p (miR-200c) in the interplay between tumor cells and macrophages. To this end, we employed a coculture system of MCF7 breast tumor cells and primary human macrophages and observed the transfer of miR-200c from apoptotic tumor cells to macrophages, which required intact CD36 receptor in macrophages. We further comprehensively determined miR-200c targets in macrophages by mRNA-sequencing and identified numerous migration-associated mRNAs to be downregulated by miR-200c. Consequently, miR-200c attenuated macrophage infiltration into 3-dimensional tumor spheroids. miR-200c-mediated reduction in infiltration further correlated with a miR-200c migration signature comprised of the four miR-200c-repressed, predicted targets PPM1F, RAB11FIB2, RDX, and MSN

    IL-38 Ablation Reduces Local Inflammation and Disease Severity in Experimental Autoimmune Encephalomyelitis

    No full text
    IL-38 is an IL-1 family receptor antagonist that restricts IL-17-driven inflammation by limiting cytokine production from macrophages and T cells. In the current study, we aimed to explore its role in experimental autoimmune encephalomyelitis in mice, which is, among others, driven by IL-17. Unexpectedly, IL-38-deficient mice showed strongly reduced clinical scores and histological markers of experimental autoimmune encephalomyelitis. This was accompanied by reduced inflammatory cell infiltrates, including macrophages and T cells, as well as reduced expression of inflammatory markers in the spinal cord. IL-38 was highly expressed by infiltrating macrophages in the spinal cord, and in vitro activated IL-38-deficient bone marrow-derived macrophages showed reduced expression of inflammatory markers, accompanied by altered cellular metabolism. These data suggest an alternative cell-intrinsic role of IL-38 to promote inflammation in the CNS
    corecore